General Setup

Software

A Computer

/ TritonSoccerAl

Al K
Modules...

Bots |4
\ -

\ S

Aly | >

Vision

Other 1« | Module

VirtualBots

_4

\

Simulator

Y

— 1

TritonBots

Virtual

Setup

Y mbedded Software

‘ Our Embedded Software, or software running on each robot, basically follows a
distributed computing model in which the TritonBot program handles the
computational-heavy algorithms and multithreaded structure, while the stm32
embedded firmware only involves driving the actuators with the raw outputs and

getting the mostly raw sensor feedbacks.

if in virtual simulator

S T

Data Filter/Fusion
Algorithms

Status Control
Exchange Commands &
via TCP Vision Data via
Socket UDP socket
> TcpReceiver UdpReceiver
kzel commands
dribbled L
on-connect SSL Vision
settings | Data
4 h 4
Y " 4
< CommandProcessor
BallCapture (Coordinate DataProcessor
» Transformation)
J \ -
A A

control
inputs

Sensor Data

dribbler/Kicker
commands v v
MotionController
(Control Algorithm) MCU Client
Targeted
Local
Velocity

(decode) (encode)
},—c'w—" ~—data—
/- Actuator Module N y 4 Sensor Module
/ cmd[(kx, ky), EN, (Vx, Vy, w)] \ / datal(x, v, 8), (Vx, Vy, w)]
|) S \ |
¥ .
Kicker/Chipper BodyToWheel
firmware Transiormation
1 Exdended Kalman Filter
sel desired speed (EKF
Y
9 A
Wi . i X, ¥ |
Wheel spead PID 5 Vx, Wy, w) | B
[‘ i |
PID output measured speed
Y
B I
Dribbler firmware SRR SR S = TR Gyro, Accel, M
" firmware | Transformation Y70, A00K. N
J angular crsplacement
(encoder-count)

\
‘n
\

N
]

[

Camera Client J

[Robot MCU (Running Embedded System Firmware)}

Command

Raspberry Pi4
[cpp] TritonBot exe
USB-CDC-VCP

USB Read Module

USB Write Module

camera object detection
& optical flow data

Robot's Internal
Camera

encode/decode with
mini-protocol buflers

- Independent class

} Independent module running in a FreeRTOS Task

..mode

[IMU AHRS]

[MU Firmware I

Embedded Integration

J
S

%

Our Software is highly modularized and distributed, which could adapt to the different setup demands between
running in the virtual environment and running with the physical robots. Each module in our software runs
concurrently using dependencies such as Java Future, Concurrent, or C++ boost ASIO, which conforms to the high
cohesion and loose coupling software design principle. In our new simplified design, our software mainly consists of
an Al software written in Java named TritonSoccerAl running the Al program, and a number of embedded software
programs named TritonBot written in C++ running on each robot. Similar to the league software, most of the
inter-program communications use IP socket + protobuf.

A Computer

TritonSoccerAl

Vision

Al A—|[Other <« | Module

~

ol

Intell NUC computer

usB SSL Vision Server <

Central Camera

Modules... USB
VirtualBots
All
A
Physical
WiFi: Tep/Udp
— sockets SEtUp
Raspberry
Pi-s USB 2.0: STM32 MCU-s
CDC VCP
Localhost: Tep I
Sockets
‘ The TritonSoccerAl software, in addition to having a large portion of code dedicated to perform

Other color arrow is
also used to discern
from green/red,

various kind of robot or Al skills such as moving to a certain location, getting ball, passing ball to
another robot, making a calculated goal shot, etc., on an abstract level mainly runs the state
machine illustrated below. The core of the soccer-playing Al algorithm is constructing probability
map for estimating the probability of successful pass, successful goal shot, and having an attack
advantage, and then construct a graph connecting each robots, whose weight is the probability
instead of locational distance, and using algorithm such as Dijkstra to find the optimal path for
carrying out an attack plan.

Unconditioned

branch
Start & Init
Conditioned
branch
Branch of opposite logic to the
condition in a pairing green arrow
1

Attack

Y

if(Ally has the Ball)

minDist(Ally, Ball) <
minDist(Foe, Ball)

minDist(Ally, Ball) <
minDist(Foe, Ball)

Ally has the Ball

GetBall]

Y

Defend

State of the state machine with
details of what to execute

Concurrent
Background Task

State of the state machine
with nothing to execute

Shut down All
ATTACK components [«

and Exit

ATTACK

Y

A A

Ball Not Hold by
Ally Bot

Construct a Directed Graph called Passing &
Goal Probability Directed Graph (PDG) starting
at [the node for the Ally who holds the ball] and
ends at the node for the opponent goal, with
the remaining Ally bots as the middle nodes.
The length/weight for each edge between every
node represents the probability of successful

passing to the Ally of the second node
mutiply by the probability of a successful
scoring a goal conditioned on this second
node being the receiver of a immediate pass

]

initiate: (vertical/horizontal).

Use Dijkstra Algorithm to find the "longest" path on the PGDG, which indicates the passing
sequences maximizing the probability of successful passing and scoring a goal. In addition,
when evaluating probability for each edge, the pass-reception point for the edge is also
computed. The output of this step is (MaxProbPath, TotalProbOnMaxPath,
ReceptionPoints), the ReceptionPoints is a 3D point in which the 3rd element indicates the
| direction of passing, and should contain information about what kind of kick the pass need to

Ball Got Stolen
by Foes

Pass
Failed

Pass
Successfully

TotalProbOnMaxPath
> threshold

Command the ballHolder to pass to the
bot of next Node on the MaxProbPath
remaining attackers to their
corresponding ReceptionPoint

!

into 2 groups: Attackers who are on the
MaxProbPath & Decoys who aren't.

the points suggested by the GapFinder

Command the Ally bot

holding the ball to <--

Standby/Dodging/BackPass,
and command the rest to
points suggested by the ..

GapFinder

|

Some Delay

|

group Ally bots (not including Ally goal keeper)

PR

In a background thread command the Decoys to

Using a GapFinder to find a
list of points for Ally bots to
occupy in order to maximize
their inter-distances &

maximize distances to Foes
& maximize distance to the
passing path formed by the
ReceptionPoint & minimize
distance to Opponent Goal

Standby/Dodging/BackPass
The ally bot holding the ball
performs Standby if low threat of
foe bot stealing the ball;
Dodging if the threat is high;
BackPass if threat is extrahigh.
BackPass passes the ball to
another non-keeper ally bot
furthest to any other bots

Example Probability Map

- Mechnical

Our robot is made of carbon-fiber and 3D printed
components to ensure low mass and a low cost of
manufacturing. This robot has two main mechanisms
for matchwinning: the kicker and the dribbler. The
kicker is powered by a standard solenoid which can
achieve the max rated speed of 6.5 meters per second.
The dribbler is a 3D printed component that controls
the ball while the robot is moving. The dribbler uses a
XING-E Pro 2207 1800KV Brushless Motor, which
provides high rotational speed since it would be
typically used for quadcopter robots. Next, to ensure
our robot is up to date with the current motion
standards, we are going with a 3.2 gear ratio that
ultimately moves the robot at 5 meters per second.

\
H

Hardware

Off-Field Computer Ethernet
Router
.
WiFi
[Soccer Robot
Rasberry Pi 4
Single Board <€ PiCamera
Computer
I USB CDC VCP \
/RoboMaster Board) PWM
SPI
< Dribbler
Motor
_ / GPlO
CAN
CAN CAN CAN
Proximity
Sensor
detecting if
ESC ESC ESC ESC GPIO/ADC/I2C |ball is dribbled| *
successfully
A 4 ; Kicker
Motor Motor m Motor Circuit
Encode> Encode> ‘ﬂ%} ‘ﬂb ’

—
"

‘ Pi Camera I
I PCl Interface I

Raspberry Pi 4 Q

WiFi Card

Power

fRoboMaster Development Board Type ﬁ\

MPUG500 |e—C ISTE310

SP WM (driboler

LHeli_32 Dribbler
;—% ESC Motor

|

STM32 FA446RE

—
3V |
Power

PV (kicker)

Kicker &
Chipper

I

Fig.

Management [*
danagement SV (3A Max) Management] PYWM (chipper
/ \ —CAN Bus—, /
L

Clrcun

222V (68 Lipo

Y k4 Y
C610 C610 C610 C610
ESC ESC ESC ESC
Y
M2006 M2006 M2006 M2006
Motor Motor Motor Molor

5: Embedded Hardware

1 Team Tritons RCSC

Robot Component

Details

Embedded Computer

Broadcom BCM2711 Cortex-A72 (ARM v8) 64-bit
SoC @ 1.5GHz (Embedded in Raspberry Pi 4B)

Embedded Microcontroller

STM32F4271IH6 Cortex-M4 (ARM) 32-bit C @ 180
MHz (Embedded in DJI RoboMaster Development
Board Type A [abbrev. as RM])

IMU System (9DOF)

MPUG6500 6DOF IMU (Embedded in RM), IST8310
3DOF Magnetometer (Embedded in RM)

On-Robot Camera

8 Megapixel Pi Camera

Proximity Sensor

ST VL53L1X ToF (Not included in the current pro-
totype, but will appear in a future upgrade to detect
ball-holding status)

Communication

WiFi between standard home router and our PC

Main Motors

DJI M2006 Motor with built-in encoders, Max 500
rpm, Max 44W, 416rpm at 1 Nm, @24V

Gear Ratio

3.33, wheel speed up to 1385.28 rpm

ESCs DJI C610 32-bit FOC ESC (interfaced with CAN
BUS), @24V, @Max 10A
Wheels GTF 50mm Omni Wheel

Dribbler Motor & ESC

T-MOTOR MT2212-13 980KV Brushless Motor (cur-
rent prototype), XING-E 2207 1800KV Brushless
Motor (future upgrade), ICQUANZX ESC BLHeli_S
6s 35A

Kicker Circuit

LT3751 Capacitor Charger Controller 1C, GA3459-
BL Flyback Transformer (turn ratio 1:10), IGBT
switch (FZT755TA PNP + FDS2582 NMOS), 2700
Capacitor, @12v operating voltage, boost to 130V in
272 ms

Servo

WEISE DS3218 Servo @5V 20KG

Power Supply

22.2 V 6s LiPo, 1550 mAh, 100C

Table

1: Robot Specification Table

/

System Overview

Our electrical design for the kicker circuit is based
on the LT3751 Flyback Converter topology.
Pairing that up with a voltage regulator in the
form of the LTC2955CTS8-1hot swap controller
and the LTC4231CMS-2 and you got yourself a
modern SSL boost up circuit. We are using a
2700uF mega capacitor to discharge high current
into our standard solenoids. Our switching circuit
uses a high power latch for the first powering
stage and the IKB4ON65ES5ATMAT1 for the

switching stages. These branches are, of course,
protected by a series of high current rated diodes.
Electrifying!

